HiPer FRED | <i>ур</i> е | Ag [*] Aİ [*] | V_{RRM}
[∨] | I F
[A] | Chip Size
[mm] x [mm] | Package
Options | |-------------|---------------------------------|-------------------------------|-------------------|--------------------------|--| | DWLP 23 | V V | 1200 | 29 | 5.50 3.50 | sawn on foil unsawn wafer in waffle pack | | 1 | *Frontside options | | | | *Please contact
IXYS chip sales | # **Mechanical Parameters** 11.08 mm² Area active Area total 19.25 mm² Wafer size Ø 150 mm **Thickness** 425 μm Material Si 770 Max. possible chips per wafer Passivation front side Glass Metallization top side bondable or solderable solderable (only): Al / Ti / Ni / Ag Metallization backside Recom. wire bonds (AI) Anode Number 380 Ø μm Reject Ink Dot Size Ø 0.4-1.0 mm Recom. Storage Environment sawn on foil in org. container, in dry nitrogen < 6 month unsawn wafer in org. container, in dry nitrogen <2 year in waffle pack in org. container, in dry nitrogen < 2 year -40 ... 40 °C T_{stq} *Sinterable top/bottom side on request #### Features: - Anode top - Pt doped - Epitaxial diode - Planar surface - Glass passivated #### Applications: - Antiparallel diode for high frequency switching devices - Antisaturation diode - Snubber diode - Free wheeling diode in converters and motor control circuits - Rectifiers in switch mode power supplies (SMPS) - Inductive heating - Uninterruptible power supplies (UPS) - Ultrasonic cleaners and welders - PDP # **Dimensions** | Α | В | С | D | E | | |------|------|------|------|------|--| | [mm] | [mm] | [mm] | [mm] | [mm] | | | 5.50 | 3.50 | 4.50 | 2.50 | 0.20 | | # **Electrical parameters** | Symbol | Conditions | | Ratings | | | | |----------------------|---|------|---------|-------|-----------|--| | | | min. | typ. | max. | | | | I _R | $V = V_{RRM}$ $T_{VJ} = 25^{\circ}C$ | | | 10 | μA | | | | $T_{VJ} = 125$ °C | | | 1 | mA | | | V _F | $I_F = 30 \text{ A}$ $T_{VJ} = 25^{\circ}\text{C}$ | | | 2.69 | V | | | | T _{VJ} = 150 °C | | | 1.83 | V | | | V _{F0} | For power-loss calculations only | | | 1.12 | V | | | r _F | $T_{VJ} = 175 ^{\circ}\text{C}$ | | 3 | 13.50 | $m\Omega$ | | | T _{VJ} | × | -55 | | 175 | °C | | | I _{F(AV)} * | T _c = 125°C; 180° rect. | | | 29 | Α | | | I _{FSM} * | $T_{yJ} = 45^{\circ}C; t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ | | | 200 | Α | | | R _{thJC} * | DC current | | | 0.9 | K/W | | | t _{rr} | $V_R = 30$ $I_F = 1 \text{ A}; -di_F/dt = 200 \text{ A/}\mu\text{s;}T_{VJ} = 25^{\circ}\text{C}$ | | 120 | | ns | | | I _{RM} | $V_R = 100$ $I_F = 50 \text{ A}$; $-di_F/dt = 100 \text{ A/}\mu\text{s}$; $T_{VJ} = 25^{\circ}\text{C}$ | | 5.00 | 6.70 | Α | | ^{*} Data according to assembled Chip DSEP 30-12 Data according to IEC 60747 ## Terms of Conditions and Usage The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For any information on the types in question please contact the sales office/partner, which is responsible for you. Should you intend to use the product in aviation applications, in health or life endangering or life support applications, please notify. For any such applications we urgently recommend - to perform joint risk and quality assessments; - the conclusion of quality agreements; - to establish joint measures to ensure application specific product capabilities and notify that IXYS may delivery dependent on the realization of any such measures.