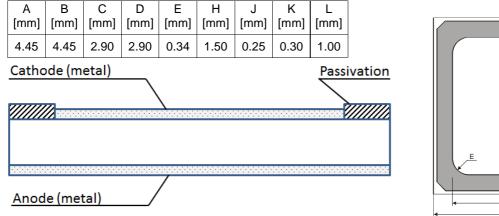
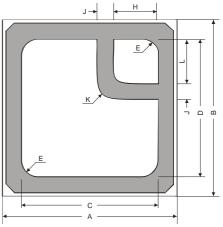


preliminary

Туре	Ag [*] Aİ [*]	V _{DRM} / V _{RRM}	V _{DSM} / V _{RSM} [V]	/_{Т(AV)} [А]	Chip Size [mm] x [mm]	Package Options	•
CWP 7-	12 🗸	1200	1300	19	4.45 4.45	sawn on foil unsawn wafer in waffle pack	
	*Frontside options					*Please contact IXYS chip sales	


Mechanical Parameters


Area active		0	0.06	cm ²	1////	
Area total		0).20	cm ²		
Wafer size Ø		1	150	mm	Features	
Thickness	290 μm Si			 planar passivate and channelstop 		
Material						
Max. possible chips per wafer	682			Planar front and		
Passivation front side	Glassivation				Non-structured non-structured	
Metallization top side	solderable: Ti / Ni / Ag *			on full area botto		
top side	I	bondable: 4 µm	ΑI			
Recom. wire bonds (AI)	Cathode Gate					
Number / Ø [μm]	6 / 300	1 / 3	300		Applications	
Metallization backside	solderal	ble (only):Ti / Ni /	Ag *		DC motor contro	
Reject Ink Dot Size		Ø 0.4-	-1.0	mm	AC power contro	
Recom. Storage Environment					Softstart AC motLight, heat and t	
sawn on foil	in org. container, in	dry nitrogen	< 6	month	3 /	
unsawn wafer	in org. container, in	dry nitrogen	< 2	year		
in waffle pack	in org. container, in	dry nitrogen	< 2	year		
·	T _{stg}	-40	40	°C		
	ary .					

- ted with guardring
- d back surface
- anode contact tom side
- rol
- rol
- otor controller
- temperature control

*Sinterable top/bottom side on request

Dimensions

preliminary

			Ratings				
Symbol	Conditions	min.	typ.	max.			
I _R	$V_D = Vr = Vrr$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		0.05 5			
V ₇	I _T = 20 A	$T_{VJ} = 25 ^{\circ}\text{C}$ $T_{VJ} = 150 ^{\circ}\text{C}$	40	1.27 1.24			
V _{To}		s calculations only		0.86			
r,	T _{v.j} = 150 °C			19.00	m		
V _{G7}	$V_D = 6 \text{ V}$	T _{v.i} = 25°C	79	1.5			
	_	$T_{VJ} = -40$ °C		2.5			
l _{gī}	$V_D = 6 V$	$T_{v_{J}} = 25^{\circ}C$ 13		24	m		
G/		$T_{VJ} = -40$ °C		50	m		
V _{GD}	T _{vJ} = 125 °C	$V = \frac{2}{3} V_{DRM}$		0.2			
l _{gD}				4	n		
I _L	t _p =10 μs	$T_{VJ} = 25^{\circ}C$ $I_{G} = 0.1 \text{ A di}_{G}/dt = 0.1 \text{ A/}\mu\text{s}$		75	n		
I _H	R _{GK} = ∞	$T_{VJ} = 25^{\circ}C$ $V_{D} = 6 \text{ V}$		60	n		
t _{gd}	$V_D = \frac{1}{2} V_{DRM}$			2			
		$di_{g}/dt = 0.5 A/\mu$					
t _q	-	$I_{T} = 20 \text{ A}$ -di/dt = 10 A/µs		150			
-4	$t_p = 200 \mu s$	$dv/dt = V/\mu s V_D = \frac{2}{3} V drm T_{V,J} = 125 °C$					
(di/dt) _a	repetitive	$I_T = 20$ A		100	A/ı		
	non repetitive	I _T = 19 A		500	A/ı		
	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150 ^{\circ}\text{C}$ $di_{G}/dt = 0.1 \text{A/}\mu\text{s}$					
	$I_G = 0.1 A$	$t_p = 200 \ \mu s$ $f = 50 \ Hz$					
(dv/dt) _{cr}	$T_{VJ} = 150 ^{\circ}C$	$V_{DR} = \frac{2}{3} V_{DRM}$		500	V/ا		
	R _{GK} = ∞	method 1 (linear voltage rise)					
$P_{\sf GM}$	$T_{VJ} = 125 ^{\circ}\text{C}$	$t_p = 30 \mu s$		10	,		
		$t_p = 3E \mu s$		5	'		
P _{GAV}				0.5	'		
V _{rgm}				10			
T _V J		-40		150	ď		
I _{T(AV)}	$T_{\rm C} = 100 ^{\circ} \text{C}$	180° rect.		19			
	T _{vJ} = 150 °C	180° sine		18			
I _{TSM} *	$T_{VJ} = 45^{\circ}C$	t = 10 ms (50) Hz, sine		180			
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		210			
	T _{VJ} = 150 °C	t = 10 ms (50) Hz, sine		170			
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		180			
Pt *	$T_{VJ} = 45^{\circ}C$	t = 10 ms (50) Hz, sine		162	Α		
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		183	Α		
	T _{VJ} = 150 °C	t = 10 ms (50) Hz, sine		145	Α		
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		134	Α		

^{*} Data according to assembled product CS 19

Data according to IEC 60747

Thyristor Chip

CWP 7-12

preliminary

Terms of Conditions and Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For any information on the types in question please contact the sales office/partner, which is responsible for you.

Should you intend to use the product in aviation applications, in health or life endangering or life support applications, please notify. For any such applications we urgently recommend

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures to ensure application specific product capabilities and notify that IXYS may delivery dependent on the realization of any such measures.