

tentative

X2PT IGBT Chip

Туре	V _{CE} [∀]	/c [A]	_	Size x [mm]	Package	Ordering Code
IX183X12M2	1200	150	13.55	13.55	sawn on foil unsawn wafer in waffle pack	- tbd

Features / Advantages:

- Tvjm = 175°C
- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged X2PT design (2nd generation Xtreme light Punch Through)
 - short circuit rated for 10 µsec.
 - improved trade-off
 - low switching losses
 - low EMI
- Thin wafer technology combined with the X2PT design results in a competitive low Vce(sat)

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- · Air-conditioning systems
- Welding equipment

Mechanical Parameters

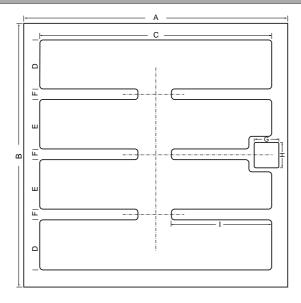
Parameters	Conditions		Ratings	Unit
Area active			155.9	mm²
Area total			183.60	mm²
Wafer size Ø			150	mm
Thickness			130	μm
Material	Si	Orientation	<100>	! ! ! !
Max. possible chips	per wafer		61	1 1 1 1
Passivation	front side		SiN	1 1 1 1
Metalization	top side		AlSi	1 1 1 1
	backside		Al / Ti / Ni / Ag	! ! ! !
Recom. wire bonds (AI)	Emitter	Number / Ø	12 / 300	- / µm
	Gate	Number / Ø	1 / 300	- / µm
Reject Ink Dot Size	Ø		0.4-1.0	mm
Recom. Storage Environment	in orig. container, in dry nitrogen		< 6	month
	Storage Temperature (Tstg)		-40 40	°C
Virtual junction temperature T _{VJ}			-40 175	°C

Terms Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. For any such applications we urgently recommend

- to perform joint Risk and Quality Assessments;
- the conclusion of Quality Agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery depended on the realization of any such measures


tentative

Electrical Parameters

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	max.	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	±20	· V
	76	Α
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	٧
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		٧
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2	٧
$I_{GES} \qquad Gate \ emitter \ leakage \ current \qquad V_{CE} = 0 \ V \qquad V_{GE} = \pm 20 \ V \qquad V_{GE} = \pm 15 \ V \qquad $	7.7	mΩ
$ \begin{array}{ c c c c c } \hline \textbf{\textit{I}_{GES}} & Gate \ emitter \ leakage \ current & V_{CE} = 0 \ V & V_{GE} = \pm 20 \ V \\ \hline \textbf{\textit{V}}_{GE(th)} & Gate \ emitter \ threshold \ voltage & I_{C} = 6 \ mA & V_{CE} = V_{GE} & T_{VJ} = 25 ^{\circ}C & 5.5 \\ \hline \textbf{\textit{Q}}_{Gon} & Total \ gate \ charge & I_{C} = 150 \ A & V_{CE} = 600V & V_{GE} = \pm 15 \ V & 520 \\ \hline \textbf{\textit{R}}_{G \ int} & Internal \ gate \ resistor & & & & & & & & & & & & & & & & & & &$	100	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	V
C_{les} Input capacitance $V_{CE} = 25 \text{ V}$ $V_{GE} = 0 \text{ V}$ $V_{CV} = 25 \text{ C}$ tbd C_{res} Reverse transfer capacitance $V_{CE} = 25 \text{ V}$ $V_{GE} = 0 \text{ V}$ $V_{CV} = 25 \text{ C}$ tbd C_{res} Reverse transfer capacitance $V_{CE} = 10 \text{ MHz}$ $V_{CE} = 10 \text{ MHz}$ $V_{CE} = 10 \text{ MHz}$ V_{CE} Current rise time $V_{CE} = 100 \text{ V}$ $V_{CE} = 100 \text{ MHz}$ $V_{CE} = 100 \text{ MHz}$ V_{CE} $V_{CE} = 100 \text{ V}$ $V_{CE} = 100 \text{ V}$ $V_{CE} = 100 \text{ C}$ V_{CE} <td></td> <td>nC</td>		nC
C_{oss} Output capacitance $V_{cE} = 25 \text{ V}$ $V_{GE} = 0 \text{ V}$ $T_{VJ} = 25 ^{\circ}\text{C}$ C_{res} Reverse transfer capacitance $f = 1 \text{ MHz}$ tbd $t_{d(on)}$ Turn-on delay time100 t_{r} Current rise time50 t_{g} Turn-off delay time $V_{G} = 600 \text{ V}$ $I_{C} = 150 \text{ A}$ 300 t_{r} Current fall time $R_{G} = 4.7 \Omega$ $V_{GE} = \pm 15 \text{ V}$ $V_{VJ} = 150 ^{\circ}\text{C}$ E_{on} Turn-on energy per pulsemeasured with: DMHP 107-1217 E_{off} Turn-off energy per pulse $V_{GE} = 15 \text{ V}$ $V_{GE} = 4.7 \Omega$ $V_{VJ} = 150 ^{\circ}\text{C}$ $V_{CE} = 1200 \text{ V}$ $V_{CE} = 1200 \text{ V}$		Ω
CresReverse transfer capacitance $f = 1 \text{ MHz}$ tbd $t_{d(on)}$ Turn-on delay time100 t_r Current rise time50 $t_{d(off)}$ Turn-off delay time $V_G = 600 \text{ V}$ $I_C = 150 \text{ A}$ 300 t_r Current fall time $R_G = 4.7 \Omega$ $V_{GE} = \pm 15 \text{ V}$ $T_{VJ} = 150^{\circ}\text{C}$ E_{on} Turn-on energy per pulsemeasured with: DMHP 107-1217 E_{off} Turn-off energy per pulse12RBSOAReverse bias safe operation area $V_{GE} = 15 \text{ V}$ $R_G = 4.7 \Omega$ $T_{VJ} = 150^{\circ}\text{C}$		nF
C_{res} Reverse transfer capacitancetbd $t_{d(on)}$ Turn-on delay time100 t_r Current rise time50 $t_{d(off)}$ Turn-off delay time $V_G = 600 \text{V}$ $I_C = 150 \text{A}$ 300 t_f Current fall time $R_G = 4.7 \Omega$ $V_{GE} = \pm 15 \text{V}$ $T_{VJ} = 150 ^{\circ}\text{C}$ E_{on} Turn-on energy per pulsemeasured with: DMHP 107-1217 E_{off} Turn-off energy per pulse12RBSOAReverse bias safe operation area $V_{GE} = 15 \text{V}$ $R_G = 4.7 \Omega$ $T_{VJ} = 150 ^{\circ}\text{C}$		рF
t_{r} Current rise time50 $t_{d(df)}$ Turn-off delay time $V_{G} = 600 \text{V}$ $I_{C} = 150 \text{A}$ 300 t_{r} Current fall time $R_{G} = 4.7 \Omega$ $V_{GE} = \pm 15 \text{V}$ $T_{VJ} = 150^{\circ}\text{C}$ E_{on} Turn-on energy per pulsemeasured with: DMHP 107-1217 E_{off} Turn-off energy per pulse12RBSOAReverse bias safe operation area $V_{GE} = 15 \text{V}$ $R_{G} = 4.7 \Omega$ $T_{VJ} = 150^{\circ}\text{C}$		pF
$t_{\text{d(off)}}$ Turn-off delay time $V_{\text{G}} = 600 \text{V}$ $I_{\text{C}} = 150 \text{A}$ 300 t_{f} Current fall time $R_{\text{G}} = 4.7 \Omega$ $V_{\text{GE}} = \pm 15 \text{V}$ $T_{\text{VJ}} = 150 ^{\circ}\text{C}$ E_{on} Turn-on energy per pulsemeasured with: DMHP 107-1217 E_{off} Turn-off energy per pulse12RBSOAReverse bias safe operation area $V_{\text{GE}} = 15 \text{V}$ $R_{\text{G}} = 4.7 \Omega$ $T_{\text{VJ}} = 150 ^{\circ}\text{C}$ $V_{\text{CE}} = 1200 \text{V}$		ns
t_f Current fall time $R_G = 4.7 \Omega$ $V_{GE} = \pm 15 \text{ V}$ $T_{VJ} = 150^{\circ}\text{C}$ 150 E_{on} Turn-on energy per pulsemeasured with: DMHP 107-1217 E_{off} Turn-off energy per pulse12RBSOAReverse bias safe operation area $V_{GE} = 15 \text{ V}$ $R_G = 4.7 \Omega$ $T_{VJ} = 150^{\circ}\text{C}$ $V_{CE} = 1200 \text{ V}$	1	ns
E_{on} Turn-on energy per pulsemeasured with: DMHP 107-1217 E_{off} Turn-off energy per pulse12RBSOAReverse bias safe operation area $V_{GE} = 15 \text{ V}$ $R_{G} = 4.7 \Omega$ $T_{VJ} = 150^{\circ}\text{C}$ $V_{CE} = 1200 \text{ V}$		ns
E_{off} Turn-off energy per pulse12 RBSOA Reverse bias safe operation area $V_{GE} = 15 \text{ V}$ $R_G = 4.7 \Omega$ $T_{VJ} = 150^{\circ}\text{C}$ $V_{CE} = 1200 \text{ V}$		ns
RBSOA Reverse bias safe operation area $V_{GE} = 15 \text{ V}$ $R_G = 4.7 \Omega$ $T_{VJ} = 150^{\circ}\text{C}$ $V_{CE} = 1200 \text{ V}$		mJ
V _{CE} = 1200 V		mJ
SCSOA Short circuit safe operation area	300	Α
	1	1
t_{sc} Short circuit duration $V_{CE} = 800 \text{ V} V_{GE} = \pm 15 \text{ V} T_{VJ} = 150^{\circ}\text{C}$	10	μs
$R_{\rm g} = 4.7 \Omega$ non-repetitive 700		Α

Data according to IEC 60747

Dimensions (1 mm = 0.0394")

A	В	С	D	E
[mm]	[mm]	[mm]	[mm]	[mm]
13.55	13.55	12.1	2.73	2.6

F	G	Н	I	J
[mm]	[mm]	[mm]	[mm]	[mm]
0.5	1.14	1.18	5.45	n/a